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The paper presents numerical simulations of heat conduction around a circular
vertical cylinder immersed in liquids. A finite volume formulation is used, and
the numerical analysis is performed in unsteady state with an explicit scheme.
The numerical predictions are compared with experiments performed on liquids
to find the temperature inside the cylinder, where a thermocouple is located, and
at the wall of the insulated coaxial container, where the liquid is poured. The
cylinder is immersed vertically. The numerical results are in good agreement
with the temperature at the wall of the container. The experimental temperature
measurement of the thermocouple located inside the probe is intermediate
between the numerical temperatures on the axis and on the surface of the probe.
The natural convection phenomenon is evidenced in the experiments, after a
certain time from the beginning of heating, in some of the liquids used, except
glycerol. Natural convection is not considered in the present numerical simula-
tions, which solve only the heat conduction equation.
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1. INTRODUCTION

The thermal probe is an instrument used to measure the thermal conductivity
of liquids and porous granular materials, as established by Blackwell [1],



Jaeger [2], De Vries and Peck [3], and reported by Carslaw and Jaeger [4].
The probe construction is a very difficult laboratory task, because the
design of the internal parts of the probe can introduce some significant
limitations on uncertainties [5].

Several probes have been constructed in the laboratories of the first
author of this work [6–12]. A common guideline in the correct construc-
tion of the thermal probe is to have a length-to-diameter ratio of the probe
greater or equal to 100. In several cases, geometrical restrictions do not
allow to have such a high ratio, and, in these cases, it is desirable to have a
numerical approach that could help in the evaluation of the errors and in
the proper design of the probe.

The present paper reports numerical simulations of heat conduction to
liquids from a heated thin vertical cylinder, which is used as a thermal
probe.

2. NUMERICAL SIMULATION

2.1. Geometry and Physical Properties

The thermal probe, constructed in the Laboratory of Heat Transfer of
the University of Rome ‘‘Tor Vergata,’’ has been described in Refs. 13 and 14.
It is composed of a hollow stainless steel cylinder, with a length of 59.5 mm,
an external diameter of 0.6 mm, and an internal diameter of 0.3 mm, con-
taining a platinum heating wire, with an electrical resistance of 5.8 W and a
diameter of 65 mm, and a thermocouple made of two copper—constantan
wires, 76 mm in diameter. An epoxy resin, poured inside the cylinder in the
liquid state, helps to maintain the stability of the heating wire and the
thermocouple after its solidification. The handle of the probe is made with
the same epoxy resin. The thermocouple junction is located at the middle
of the probe.

In the numerical simulations the thermal probe has been assumed to
be composed of an inner cylinder, made of epoxy resin, with a radius of
0.15 mm and an outer steel annulus of radius 0.3 mm. The epoxy resin has
the following physical properties, density of 1250 kg · m−3, specific heat of
1045 J · kg−1 · K−1, and a thermal conductivity of 0.2 W · m−1 · K−1. The
properties of the stainless steel are: density of 7820 kg · m−3, specific heat of
460 J · kg−1 · K−1, and a thermal conductivity of 14 W · m−1 · K−1, as found
from the literature.

The numerical simulation assumes the fluid is set in a cylindrical con-
tainer (diameter of 48 mm) with insulated boundaries and the thermal
probe is maintained vertically on the axis.
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2.2. Equations

The thermal probe is step-heated by direct electric current, and the
power is generated on the axis of the probe. The temperature distribution
in the probe and in the heated liquid is determined from the numerical
solution of the heat conduction equation,
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where r, c, l are the density, specific heat, and thermal conductivity of the
medium, respectively, T and t are the temperature and the time, respec-
tively, r and z are the radial and axial co-ordinates, and q is the heat power
for a volume unit.

Equation (1) has been solved numerically using the finite volume
technique, according to Ref. 15. With the time explicit scheme, Eq. (1)
becomes

aP1TP(t+Dt)=aPTP(t)+aWTW(t)+aETE(t)+aSTS(t)+aNTN(t)+S (2)

where the coefficients are relative to Fig. 1, according to the method of
Ref. 15. The term S in Eq. (2) can take into account the heat generated
within the entire volume of the thermal probe or on the axis of the probe.

2.3. Grids

The first grid used is made dividing the physical region, in the radial
direction from the axis of the probe to the container wall, into 58 parts,
with Dr=0.15 mm inside the probe and Dr=0.42 mm in the fluid. In this

Fig. 1. Control volume.
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way, three nodes of the grid are inside the probe. The first one is on the
axis, the second at the boundary between epoxy resin and steel, and the
third one at the surface boundary between steel and liquid. The physical
region in the axial direction has been divided into 161 nodes, of length
Dz=0.4375 mm.

In a numerical explicit scheme the time step is normally a function of
the grid size. The present numerical analysis has found it convenient to
assume the time step to be given by

Dt=
Dx2

min

5amax
(3)

where Dxmin is the minimum value of the grid space and amax is the
maximum value of the thermal diffusivity of the materials involved in the
calculations.

The grid independence test has been done comparing the results of the
first grid with those of a second grid, made with 115 nodes in the radial
direction (with Dr=0.15 mm inside the probe and Dr=0.21 mm in the
liquid) and 321 nodes in the axial direction (with Dz=0.21 mm).

2.4. Uncertainty Estimate

The uncertainty in the numerical solutions, or grid independence test,
has been evaluated by comparing the numerical results obtained with the
two grids described in the previous chapter. The temperature difference of
the numerical solutions, obtained with the two grids, is never higher than
0.07 K.

The numerical simulation is possible only by assuming an input value
of the thermal conductivity of the investigated liquid. On the other hand,
the method of the perfect line source can be used to calculate the thermal con-
ductivity by the slope of the temperature increase, on a semi-logarithmic
scale versus time, according to the well known relation, in dimensionless
form [4],

DTg=0.5(ln 4tg − 0.5772), (4)

also known as the perfect line source (PLS) solution.
In other words, the temperature values, obtained by the numerical

analysis, have been reported, as a function of time, on a semi-logarithmic
scale, and the thermal conductivity has been evaluated with the method of
the perfect line source. The difference between the input value of the
numerical analysis and the value obtained by the slope of the curve has
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been found to be smaller than 4% in all cases, except for silicon oil where
the difference is 6%.

The experimental uncertainty analysis has been reported in detail in
Refs. 13 and 14, and is not repeated in the present paper, where the main
concern is the numerical analysis. The experimental temperature uncer-
tainty has been found to be less than 0.1°C. The standard uncertainty in
the measurement of the temperature has been analyzed with the residuals
and is generally less than 0.03°C. Uncertainties propagation from mea-
surements of the current supplied by the feeder and of the variation in the
power due to the increase of the heater resistance, along with the uncer-
tainty in the diameter and length of the heater, resulted in an overall
uncertainty in thermal conductivity of between 1 and 2%.

The presence of natural convection in the experiments is not taken
into consideration by the numerical analysis because the evaluation of the
slope of the curve is carried out only in the linear region and before the
onset of natural convection.

3. COMPARISON BETWEEN NUMERICAL SIMULATIONS AND
EXPERIMENTAL RESULTS

The experiments, carried out in the Heat Transfer Laboratory, are
reported in detail in Refs. 13 and 14.

3.1. Glycerol

Several liquids have been investigated numerically. The first one is
glycerol because it is commonly used as a reference liquid for the calibra-
tion of the thermal probe. The temperature increase in glycerol is reported
in Fig. 2, on a semi-logarithmic scale, in dimensional form. The numerical
simulation has been carried out from 1 s to about 2000 s and the tempera-
ture increase can be, at maximum, 5.2 K higher than the initial value. The
highest temperature increase has been calculated numerically on the axis,
curve 1, and is variable from 1 K to about 5.2 K at 2000 s. The temperature
difference at the steel surface, curve 2, is almost 2 K lower than on the axis,
and it increases from about 0.4 K at 1 s to about 3.1 K at 2000 s. Finally,
the temperature increase at the wall of the cylindrical container, curve 3,
due to the overall heating of the liquid, has been predicted, and Fig. 2
shows that the increase is almost zero up to 1000 s and it is only equal to
0.3 K at 2000 s.

The numerical predictions appear in good agreement with the experi-
ments. The experimental increase in temperature of the thermocouple
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Fig. 2. Dimensional temperature increase in glycerol. Curves 1, 2, and 3 are numerical
predictions, where curve 1 is relative to the probe axis, curve 2 to the probe surface, and
curve 3 to the temperature on the wall of the container. Curves 4 and 5 are experimental
measurements where curve 4 is relative to the thermocouple in the probe and curve 5 to
the container wall.

inside the probe, curve 4, is intermediate between the numerical value on
the axis and that on the surface. This is really a good comparison because
the thermocouple is located internally at the probe but the exact position is
very difficult to be detected. The experimental increase in temperature,
at the wall of the container, curve 5, is almost equal to the numerical
prediction.

The numerical predictions in glycerol, with the two numerical grids
described previously, have shown a maximum temperature difference of
0.07 K. The numerical data of Fig. 2 have been used to calculate the
thermal conductivity of glycerol, and the difference between the initial
value (0.274 W · m−1 · K−1) and the value calculated by the numerical results
is 1.2%.

The numerical predictions for glycerol are reported in Fig. 3, in
dimensionless form, along with the experiments and the PLS (perfect line
source) solution, curve 2. Good agreement is observed between the PLS
solution and the numerical results on the wall of the steel, almost coinci-
dent to each other, curve 2. Figure 3 presents the dimensionless numerical
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Fig. 3. Dimensionless temperature increase in glycerol. Curves 1, 2, and 3 are numerical
predictions, where curve 1 is relative to the probe axis, curve 2 to the probe surface, and curve 3
to the temperature on the wall of the container. Curve 2 also represents the PLS (perfect line
solution) coincident with the numerical solution on the probe surface. Curves 4
and 5 are experimental measurements where curve 4 is relative to the thermocouple in the
probe and curve 5 to the container wall.

temperature increase, versus the dimensionless time, on the axis, on the
external surface of the thermal probe, and on the container wall.

Figure 3 reports also the experimental temperatures measured by the
thermocouple, which is present inside the thermal probe, and the experi-
mental temperatures of the thermocouple located on the cylindrical wall of
the container. The temperature on the container wall remains almost con-
stant during the measurements showing that the assumption of an infinite
container is well approximated by the experiments. The experimental data
fall within the predictions for the surface and the axis of the thermal probe.
Reasonable agreement is found with the predictions obtained on the
surface.

3.2. Water

The second liquid investigated is water and the numerical, as well as
the experimental results, are presented in Figs. 4 and 5, respectively, in
dimensional and dimensionless forms. The numerical predictions of Fig. 4
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show a continuous increase of the temperature difference, according to the
heat conduction equation used in the numerical simulation, while, the real
experiment shows that, after about 23 s, the water starts to develop natural
convection (curve 4). The experimental temperature is almost constant up
to about 163 s, when a temperature increase is present (corresponding to
1.9 K), because of the overall heating of the water, as confirmed by the
increase of the temperature at the wall of the container (curve 5). The
numerical simulation at the wall of the container (curve 3) is in good
agreement with the experimental results, and they start to increase after
about 163 s. The numerical simulation on the axis (curve 1) gives a higher
temperature than the other temperatures. The numerical simulation on the
wall of the probe (curve 2) gives a lower temperature than the experimental
result for the probe thermocouple (curve 4), and also this result is justified
by the fact that the probe is located inside the cylinder and a layer of epoxy
layer is present. The numerical temperature difference, obtained with the
two grids, has been found to be less than 0.06 K and the thermal conduc-
tivity, evaluated by the numerical solution, has been found different from
the input value (0.66 W · m−1 · K−1) by 3.6%.

Fig. 4. Dimensional temperature increase in water. Curves 1, 2, and 3 are numerical
predictions, where curve 1 is relative to the probe axis, curve 2 to the probe surface, and
curve 3 to the temperature on the wall of the container. Curves 4 and 5 are experimental
measurements where curve 4 is relative to the thermocouple in the probe and curve 5 to
the container wall.
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Fig. 5. Dimensionless temperature increase in water. Curves 1, 2, and 3 are numerical
predictions, where curve 1 is relative to the probe axis, curve 2 to the probe surface, and
curve 3 to the temperature on the wall of the container. Curve 2 also represents the PLS
(perfect line solution) coincident with the numerical solution on the probe surface. Curves
4 and 5 are experimental measurements where curve 4 is relative to the thermocouple in
the probe and curve 5 to the container wall.

The dimensionless results, reported in Fig. 5, show that the numerical
temperature on the probe surface (curve 2) is almost coincident with the
PLS solution.

3.3. Ethylene Glycol

The results of the numerical simulations with ethylene glycol are
reported in Figs. 6 and 7 in dimensional and dimensionless form, respec-
tively. Considerations for Fig. 6 are similar to the previous ones with water,
Fig. 4. In ethylene glycol, natural convection starts after 84 s. Numerical
predictions on the probe surface (curve 2) are in agreement with the exper-
iments (curve 4) from the beginning of heating, with a temperature differ-
ence that is constant up to the occurrence of natural convection. The tem-
perature difference of the numerical predictions, obtained with the two
grids, is less than 0.06 K, and the thermal conductivity, evaluated by the
slope of the numerical results, is 3.6% different from the input value
(0.252 W · m−1 · K−1).

Figure 6 shows good agreement between numerical predictions and
experiments at the wall of the container (curves 3 and 5) and between the
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Fig. 6. Dimensional temperature increase in etylene glicol. Curves 1, 2, and 3
are numerical predictions, where curve 1 is relative to the probe axis, curve 2 to
the probe surface, and curve 3 to the temperature on the wall of the container.
Curves 4 and 5 are experimental measurements where curve 4 is relative to the
thermocouple in the probe and curve 5 to the container wall.

Fig. 7. Dimensionless temperature increase in etylene glicol. Curves 1, 2, and 3 are
numerical predictions, where curve 1 is relative to the probe axis, curve 2 to the probe
surface, and curve 3 to the temperature on the wall of the container. Curve 2 also
represents the PLS (perfect line solution) coincident with the numerical solution on
the probe surface. Curves 4 and 5 are experimental measurements where curve 4 is
relative to the thermocouple in the probe and curve 5 to the container wall.
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Fig. 8. Dimensional temperature increase in silicon oil. Curves 1, 2, and 3 are
numerical predictions, where curve 1 is relative to the probe axis, curve 2 to the
probe surface, and curve 3 to the temperature on the wall of the container. Curves 4
and 5 are experimental measurements where curve 4 is relative to the thermocouple
in the probe and curve 5 to the container wall.

probe wall and the probe thermocouple (curves 2 and 4). Furthermore, the
numerical predictions are in good agreement with the PLS solutions (curve 2),
coincident and superimposed in Fig. 7.

3.4. Silicon Oil

The last liquid investigated here is silicon oil. Figures 8 and 9 present
the dimensional and dimensionless temperature increases. In silicon oil
natural convection starts after 197 s. Agreement is again good. The numer-
ical temperature difference, obtained with the two grids, is less than 0.06 K
and the thermal conductivity difference, between the input value and that
evaluated by the slope, is 6%.

4. CONCLUSIONS

The numerical procedure used for the simulations has provided good
agreement between predictions and experiments. The grid independence
test has been satisfied giving temperature differences of less than 0.1 K
between the two numerical results. The method of the perfect line source
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Fig. 9. Dimensionless temperature increase in silicon oil. Curves 1, 2, and 3 are
numerical predictions, where curve 1 is relative to the probe axis, curve 2 to the
probe surface, and curve 3 to the temperature on the wall of the container. Curve 2
also represents the PLS (perfect line solution) coincident with the numerical solution
on the probe surface. Curves 4 and 5 are experimental measurements where curve 4
is relative to the thermocouple in the probe and curve 5 to the container wall.

evaluation of the thermal conductivity, from the slope of the numerical
results on a semi-logarithmic scale, can provide confirmation of the value
used as an input parameter in the numerical analysis. For the liquids inves-
tigated, the difference between input and final values is less than 3.6%,
except for silicon oil which is 6%. Good agreement has been found between
numerical predictions at the probe surface and the probe thermocouple,
whose value is somewhat higher because of the temperature drop across the
epoxy resin layer inside the probe.

NOMENCLATURE

a coefficient (Eq. (2)), W · K−1

c specific heat, J · kg−1 · K−1

D probe diameter, m
q heat power, W
r radial co-ordinate, m
S heat generation term (Eq. (2)), W
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T temperature, K
T* aT/(D/2)2 dimensionless temperature
t time, s
t* 2plDT/q dimensionless time
x grid length, m
z axial co-ordinate, m

Greek

a thermal diffusivity, m2 · s−1

l thermal conductivity, W · m−1 · K−1

r density, kg · m−3

D increment

Subscript

a dimensionless quantity
max maximum value
min minimum value
P point P (Fig. 1)
W point W (Fig. 1)
E point E (Fig. 1)
S point S (Fig. 1)
N point N (Fig. 1)

Superscript

* non-dimensional quantity
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